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Abstract

Modal parameter estimation in terms of natural frequencies and mode shapes is studied using smooth orthogonal

decomposition for randomly excited vibration systems. This work shows that under certain conditions, the smooth

orthogonal decomposition eigenvalue problem formulated from white-noise induced response data can be tied to the

unforced structural eigenvalue problem, and thus can be used for modal parameter estimation. Using output response

ensembles only, the generalized eigenvalue problem is formed to estimate eigenfrequencies and modal vectors for an eight-

degree-of-freedom lightly damped vibratory system. The estimated frequencies are compared against system frequencies

obtained from structural eigenvalue problem and estimated modal vectors are checked using the modal assurance criterion.

For lightly damped simulations, satisfactory results are obtained for estimating both system frequencies and modal

vectors.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Output-only modal analysis has gained popularity over recent years (see for example Refs. [1–9]).
Advantages of output-only analysis over traditional modal analysis are the following. (1) In many real life
applications, the nature of input forcing prevents its measurement (for instance earthquake, wind, or traffic
loads on structures) and output-only analysis eliminates the need to measure inputs. (2) The construction of
complex frequency response functions or transfer matrix functions requires an experienced engineer to
correlate various response rows (or columns) to correctly identify the system modes and is cumbersome in case
the modes are not well separated. (3) Contrary to traditional modal analysis, in many cases output-only
analysis can eliminate the need of testing the structure at various locations (or components).

Output-only methods can be either time or frequency based. Some time domain output-only methods are
the Ibrahim time domain method [1], polyreference method [2], eigensystem realization algorithm [3], least
square complex exponential method [4], independent component analysis [10,11] and stochastic subspace
identification methods [5]. Frequency based output-only methods include the orthogonal polynomial methods
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[6,7], complex mode indicator function [8] and frequency domain decomposition [9]. Recent additions to the
time domain output-only family are the smooth orthogonal decomposition [12] and state-variable modal
decomposition methods [13,14], which have shown good results for modal analysis of free response cases.
These methods are variants of proper orthogonal decomposition methods recently studied for structural
modal analysis [15–19]. The smooth orthogonal decomposition method is also applicable in blind source
separation [20], fatigue damage identification [21,22], and was also presented as a generalized modal analysis
scheme [23]. The advantages of using these decomposition based methods are that they do not involve the
possibility of oversized state matrices and their spurious modes (as in Ibrahim time domain), estimation of
states (for instance in stochastic subspace identification methods) or spectral density functions (as in frequency
domain decomposition) or constructing generalized block Hankel matrices (as in eigensystem realization
algorithm), and thereby are simpler in construction and induce minimum assumptions. However, these
methods have room for development. The current work explores smooth orthogonal decomposition for the
modal parameter estimation of systems under random excitation.

2. Smooth orthogonal decomposition

2.1. Smooth orthogonal decomposition and modal analysis for free vibration

The ‘‘smooth orthogonal decomposition’’ [12] can be applied to lightly damped symmetric vibration systems
with inhomogeneous mass distributions to find structural modes. First, an n�N ensemble matrix X of
displacements is obtained from N time samples of n displacement signals. Then an ensemble V � _X of
velocities is formed. This can be done by finite difference through a matrix D, such that V ¼ XDT where X is
an ensemble of displacements (in structures case). Next the velocity covariance matrix S ¼ VVT=Nv is formed,
where Nv is the number of velocity samples. If the finite difference covers two adjacent samples, such that
viðtjÞ ¼ xiðtjþ1Þ � xiðtjÞ; then Nv ¼ N � 1. If viðtjÞ ¼ xiðtjþ1Þ � xiðtj�1Þ; then Nv ¼ N � 2, and so on. Keeping
the displacement data that correspond to the calculated velocity data, the ensemble X is pared down to the
same dimensions as V. The matrix R ¼ XXT=Nv is then formed, representing a covariance matrix if the mean
of the displacement data is zero.

Then the smooth orthogonal decomposition is based on a generalized eigenvalue problem cast as

lRc ¼ Sc . (1)

For a free multi-modal response with light damping, the eigenvalues l approximate the frequencies squared,
and the inverse-transpose of the modal matrix W approximates the linear modal matrix.

To see this, consider first the symmetric undamped vibration system of the form

M €xþ Kx ¼ 0, (2)

which is associated with the eigenvalue problem �o2MfþKf ¼ 0, which in matrix form is

KU ¼MUK, (3)

where K is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors. The eigenvalues and
eigenvectors provide the modal frequencies and the mode shapes.

The smooth orthogonal decomposition eigenvalue problem Eq. (1) can be written as lXXT c ¼ VVT c or

lXXT c ¼ XDTDXT c . (4)

Close examination [12] shows that DTDXT � � €X
T
. If the system damping is negligible, then from the

symmetric vibration model of Eq. (2), we would find � €X
T
¼ XTKM�1: Hence, Eq. (4) becomes lXXT c ¼

XXTKM�1 c : In matrix form,

XXTWK ¼ XXTKM�1W. (5)

Assuming XXT is invertible (n modes are active), we have WK ¼ KM�1W. Taking the inverse-transpose and
noting symmetry, W�TK�1 ¼ K�1MW�T, and hence

KW�T ¼MW�TK. (6)



ARTICLE IN PRESS
U. Farooq, B.F. Feeny / Journal of Sound and Vibration 316 (2008) 137–146 139
Comparing Eqs. (6) and (3), the eigenvalue problem of smooth orthogonal decomposition has reduced to the
eigenvalue problem Eq. (3) of the undamped vibration system. The smooth orthogonal decomposition modal
matrix is thus related to the structural linear modal matrix as U ¼ W�T. Chelidze and Zhou [12] derived this
relationship starting with an optimization representation of the eigenvalue problem.

Smooth orthogonal decomposition is applicable for symmetric, but otherwise general, mass and stiffness
distributions. Smooth orthogonal decomposition directly produces estimates of the modal frequencies from
the eigenvalue problem. Insight to modal participation is not directly obtained, but can come from analysis of
the modal coordinates, dependent on how modal vectors are normalized. Limitations of smooth orthogonal
decomposition are that the smooth orthogonal decomposition is restricted to lightly damped systems, and it
has not been justified or studied for random excitations. Also, sufficient numbers of sensed displacements are
needed.
2.2. Smooth orthogonal decomposition for systems under random excitation

Previously, proper orthogonal decomposition for modal analysis was justified for random excitation [19].
Here the smooth orthogonal decomposition will be justified for white noise excitation.
2.2.1. Smooth orthogonal decomposition and random excitation

Consider the symmetric vibration system neglecting damping,

M €xþ Kx ¼ fðtÞ, (7)

where fðtÞ is the random excitation. In terms of the sampled ensemble matrices, M €Xþ KX ¼ F, with F

representing the ensemble matrix of the sampled fðtÞ; and therefore DTDXT � � €X
T
¼ XTKM�1 � FTM�1.

Hence, from the matrix form of Eq. (4)

1

N
XXTWK ¼

1

N
XXTKM�1W�

1

N
XFTM�1W. (8)

The elements in the matrix ð1=NÞXXT represent cross correlations (with zero delay) between responses, and
are expected to be nonzero. The elements in the matrix L ¼ ð1=NÞXFT represent cross correlations (with zero
delay) between responses and random inputs. In other words, the elements Lij are the means of the products
xiðtÞf jðtÞ. If their expected values are zero, then this term can be neglected, and the decomposition eigenvalue
problem would then converge, as N gets large, to

1

N
XXTWK ¼

1

N
XXTKM�1W, (9)

which is the same as Eq. (5), and thus reduces to the undamped structural eigenvalue problem if XXT is
invertible. Under this condition, the smooth orthogonal decomposition, even with random excitation, would
produce the modal frequencies and mode shapes of the system. Thus we are interested in conditions for which
L! 0 as N gets large.

Elements of L have the form

Lij ¼
1

N

XN

k¼1

Xm

l¼1

Z 1
�1

hilðtÞf lðtk � tÞdtf jðtkÞ, (10)

where hilðtÞ is an element of the impulse response matrix, between fðtÞ and x: In this form hilðtÞ is a linear
combination of modal coordinate impulse response functions, each sinusoidal with a modal frequency.
Interchanging the order of sums,

Lij ¼
Xm

l¼1

Z 1
�1

hilðtÞ
1

N

XN

k¼1

f lðtk � tÞf jðtkÞdt ¼
Xm

l¼1

Z 1
�1

hilðtÞC
f
jlðtÞdt,

where C
f
jlðtÞ is the cross correlation between the forcing functions associated with coordinates j and l.
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2.2.2. White noise

Here there are two useful possibilities. One is that the forcing on all coordinates are statistically
independent. For example, independent bombardment of each coordinate by random turbulence fluctuations
might qualify. Then C

f
jlðtÞ ¼ R

f
j ðtÞdjl ; where R

f
j ðtÞ is the autocorrelation of the jth forcing term. If the forcing

functions are modeled as white noise, then C
f
jlðtÞ ¼ gjdðtÞdjl ; where dðtÞ is the Dirac delta function and djl is the

Kronecker delta.
Another possibility is that each forcing term is dependent, for example in random base excitation. Then

f jðtÞ ¼ gj f ðtÞ; and hence C
f
jlðtÞ ¼ ĝjlRf ðtÞ. If the forcing function is modeled as white noise, then

C
f
jlðtÞ ¼ gjldðtÞ.
In either of these white noise cases, we have the form

Lij ¼
Xm

l¼1

Z 1
�1

hilðtÞgjldðtÞ ¼
Xm

l¼1

hilð0Þgjl .

For a typical vibration system, the impulse response function will be such that hilð0Þ ¼ 0, whence Lij ¼ 0.
Thus, for white noise, the response and excitation are uncorrelated, and the matrix form of the smooth
orthogonal decomposition eigenvalue problem Eq. (4) represents the undamped structural eigenvalue problem
Eq. (3) for large N. As such, the smooth orthogonal decomposition should produce estimates of the modal
frequencies and mode shapes of the undamped model under white noise excitation. The natural excitation
algorithm (referred to as NExT) [24] also arrives to a similar conclusion albeit in a different way. There, it was
shown that for a system subjected to uncorrelated white-noise inputs, the cross correlation between various
outputs would be a sum of complex exponential functions of the same form as the sum of impulse response
functions of the original system. Thus, NExT would accommodate using output-only methods for modal
parameter identification in case of independent (uncorrelated) white noise forcing.

3. Example

We simulated the eight-degree-of-freedom linear vibratory system shown in Fig. 1. The system observes
light modal damping and was excited by white noise applied to the first mass with zero initial conditions. The
mass (kg) and stiffness (N/m) matrices are given as

M ¼

2 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
66666666666664

3
77777777777775

; K ¼

2 �1 0 0 0 0 0 0

�1 2 �1 0 0 0 0 0

0 �1 2 �1 0 0 0 0

0 0 �1 2 �1 0 0 0

0 0 0 �1 2 �1 0 0

0 0 0 0 �1 2 �1 0

0 0 0 0 0 �1 2 �1

0 0 0 0 0 0 �1 1

2
66666666666664

3
77777777777775

, (11)

and the damping matrix is chosen to be C ¼ cM, where c ¼ 0:01Ns=m.
The system was simulated for 1000 s with the Simulink toolbox in Matlab, which uses a fixed-step Dormand

Prince (a member of the family of Runge–Kutta methods) differential equation solver [25] to evaluate the
response of the system. White-noise forcing was generated using the Gaussian white-noise generator function
Fig. 1. The mass–spring–damper model. The dashpots are figurative to represent the presence of damping, and do not accurately

correspond to the example damping matrix.
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Table 1

System frequencies estimated from smooth orthogonal decomposition (SOD) with white noise forcing compared against the structural

eigenfrequencies from the eigenvalue problem (EVP) of Eq. (3)

SOD Structural EVP Percent error

0.1816 0.1838 1.19

0.5275 0.5266 0.17

0.8133 0.8143 0.12

1.0963 1.0966 0.02

1.3875 1.3859 0.11

1.6449 1.6412 0.22

1.8368 1.8366 0.01

1.9524 1.9586 0.31

Table 2

Estimated modes compared against the system modes using the modal assurance criterion

Mode 1 2 3 4 5 6 7 8

1 0.9993 0.0001 0.0001 0.0001 0.0000 0.0002 0.0004 0.0003

2 0.0003 0.9998 0.0004 0.0005 0.0001 0.0008 0.0019 0.0012

3 0.0003 0.0000 0.9994 0.0013 0.0002 0.0022 0.0051 0.0035

4 0.0003 0.0002 0.0003 0.9999 0.0005 0.0056 0.0127 0.0094

5 0.0000 0.0001 0.0001 0.0004 1.0000 0.0006 0.0022 0.0011

6 0.0003 0.0007 0.0023 0.0057 0.0005 0.9999 0.0279 0.0136

7 0.0008 0.0017 0.0051 0.0136 0.0018 0.0256 0.9997 0.0307

8 0.0005 0.0008 0.0021 0.0070 0.0012 0.0145 0.0296 0.9999
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that generates discrete-time normally distributed random numbers with sampling time step matching the
solver step size chosen as 0.1, resulting in the generation of 10,000 data points. The forcing was observed to
have a mean approaching zero. Both displacement and forcing matrices were saved to the Matlab workspace
for further processing. The excitation was applied to the first mass only.

In the decomposition, the V ensemble was formed with centered finite differences with a total step of two
samples, such that difference matrix D was Nv �N, and V ¼ XDT was n�Nv, where Nv ¼ N � 2. From the
data decomposition eigenvalues, estimates of the natural frequencies are compared to the true modal
frequencies in Table 1.

The modal assurance criterion [26,27] is a useful tool for testing whether or not the estimated modes are
consistent with the system modes. The normalized inner products (squared) between estimated and true modes
are seen in Table 2. Values of near unit magnitude indicate modal vectors that nearly line up. For
visualization, the modal vectors from smooth orthogonal decomposition and the structural eigenvalue
problem are compared in Fig. 2.

With random excitation, results are expected to converge as N increases. For this example, we increased N,
with the time step fixed at 0.1, and plotted the estimated frequencies in Fig. 3 (Table 3 shows the percent
errors). Increasing N improves the frequency estimates. The period of the lowest-frequency mode is about 34 s.
Estimates of this mode converged within about 10,000 samples, or 1000 s (about 30 first-mode cycles of
random response).

Important in the convergence is the relative contributions of matrices ð1=NÞXXT, ð1=NÞVVT and ð1=NÞXFT.
The maximum singular values of these matrices are plotted in Fig. 4, indicating that ð1=NÞXFT approaches
zero (while the other matrices’ singular values settle to finite values), thereby becoming negligible for large N.

The example problem studied had a maximum damping ratio of z ¼ 0:027 in the system corresponding to
fundamental frequency of o1 ¼ 0:1838. With increasing damping, the results deteriorated as seen in Fig. 5,
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Fig. 2. A comparison between mode shapes from the structural eigenvalue problem (solid lines) and those estimated from the smooth

orthogonal decomposition (� symbols). The sensor locations refer to the mass indices. The location 0 represents the wall attachment. The

modes are in ascending order by modal frequency.
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even with increased sample size. When the system had a first-mode damping factor of z ¼ 0:8, the error in
corresponding frequency estimation was � 8 percent. We also see in Fig. 5 that the frequency estimation is
very good for the ideal undamped case, for which the theory was developed.

4. Conclusion

The extension of smooth orthogonal decomposition for modal parameter estimation under random
excitation has been presented. Analysis suggests that, for undamped systems, if the expected value of the
product between response and excitation variables is zero, then the smooth orthogonal decomposition
converges to an equivalent representation of the undamped structural eigenvalue problem, and therefore
should produce estimated modal frequencies and mode shapes for randomly excited structures. This was
justified for white noise excitation, and the convergence to the structural eigenvalue problem was
demonstrated in a simulation.

In the simulation example, random excitations were applied to a linear eight-degree-of-freedom structural
system while damping was kept light. It was shown that the mean of the product of displacement matrix and
forcing vector approaches zero as sufficiently large number of samples are captured. This in turn means that
the effect of forcing in formulating the eigenvalue problem becomes negligible. Therefore, the smooth
orthogonal decomposition eigenvalue problem from data of the randomly forced problem in essence becomes
representative of the free structural eigenvalue problem.

The example problem studied was subjected to light damping. As damping increased, the estimation results
slowly deteriorated. While this work focused on white noise excitation, it can be shown that the mean of
product of the response and the forcing approaches zero (in reference to Eqs. (8) and (10)) for other classes
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Fig. 3. The frequency estimates improve as N gets large. The solid line (—) represents the true frequency (rad/s) and the asterisks (– –n)

show the estimated frequencies (rad/s). The percent error in frequency estimation computed at N ¼ 104 for modes 1–8 are

1:2; 0:17; 0:12; 0:02; 0:11; 0:22; 0:01 and 0:31 percent, respectively, also shown in Table 1.
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Table 3

Percentage error computation for all modes

Sample points 102 102:5 103 103:5 104 104:5 105 105:5 106

o1 9.68 6.69 4.95 1.08 1.19 0.70 0.48 0.38 0.00

o2 2.54 2.14 2.82 0.49 0.17 0.17 0.11 0.05 0.03

o3 2.60 3.53 1.30 0.12 0.12 0.20 0.02 0.07 0.01

o4 6.38 4.51 0.57 0.29 0.02 0.11 0.04 0.00 0.00

o5 8.60 0.85 0.21 0.39 0.11 0.08 0.06 0.02 0.00

o6 12.94 0.13 1.87 0.37 0.22 0.01 0.00 0.01 0.01

o7 21.79 1.42 1.45 0.27 0.01 0.05 0.03 0.04 0.00

o8 68.04 5.83 2.25 0.39 0.31 0.14 0.07 0.03 0.01
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Fig. 4. The maximum singular values of XXT=N ðm2), VVT=N ðm=sÞ2 and XFT=N (Nm). The bulleted line (– � –�) represents values of

XXT=N, the asterisk marker (– –n) represents the values of VVT=N and the starred line (– � –%) represents values of XFT=N.
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Fig. 5. The undamped natural frequency estimate starts to deteriorate for high damping. The solid line (—) represents the true first-mode

frequency and the dashed line (– –n) is the estimated frequency.
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of random excitation; this would broaden the applicability of smooth orthogonal decomposition for randomly
excited systems.
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